
FRR Workshop
Oct 30
Donald Sharp
Dr Helen Chen

Dr Feng Xie

Agenda

● OSPFv3 over IPv4
● BGP Memory Optimizations
● FRR Infrastracture Changes
● FRR Releases

BGP Memory Optimizations

● Why do we Care?
● BGP Peering Data Structure Reduction
● BGP Node -> dest breakup
● Input Queue/Output Queue for Peering
● bgp_path_info_extra cleanup
● ZAPI Buffer and BGP Announcement Cleanup

Why do we care?

● FRR runs on embedded systems
○ Limited memory in a bunch of cases

● No good way to give memory back
○ malloc_trim() has no good way to not block the entire program

● Good Progamatic hygiene

BGP Peering Data Structure Reduction

● peer->ibuf_scratch
○ Allocating 65535 * 10 for scratch space on a peer, can be bgp_read() private static data

● `struct bgp_synchronize`->withdraw_low just never used
● peer->sync[AFI_MAX][SAFI_MAX]

○ Never Used, 48 bytes * 4 * 8 per peer (1536 bytes)
● peer->obuf_work

○ Never Used, 66559 bytes
● peer->scratch

○ Never Used, 65535 bytes
● peer->last_reset_cause

○ Used but never approaches the 65535 allocated, allocate a stream structure when peer goes
down instead just copy the stream data and use that.

BGP Peering Data Size Reduction

● 8.5 -> sizeof(struct peer) = 741976 bytes(!!!)
● 9.0 -> sizeof(struct peer) = 20600 bytes

● Lesson Learned
○ Frequent review of what is used or not in our code base

● https://github.com/FRRouting/frr/pull/14075

struct bgp_dest breakup

● Table data structure in FRR is a
specialized binary tree that allows
for handling route prefixes

● Parent node is always a shorter
prefix that contains all the child
nodes

● Top of the tree is always 0.0.0.0/0
or the v6 equivalent

● 200 bytes for each node in BGP
● Full BGP Feed has 1.4 million

nodes, of which 900k are actual
routes

Struct bgp_dest
1.1.1.0/31

Struct bgp_dest
1.1.1.0/32

Struct bgp_dest
1.1.1.1/32

struct bgp_dest breakup
struct
route_node
1.1.1.0/31

struct
route_node
1.1.1.0/32

struct bgp_dest
struct
route_node
1.1.1.1/32

struct bgp_dest

● Each route_node info pointer points at the `struct bgp_dest` which contains the bgp specific data
● Place Holder Nodes now just use a `struct route_node`
● `struct route_node` is 120 bytes
● `struct bgp_dest` is 96 bytes
● Saves about 30mb per full BGP feed
● https://github.com/FRRouting/frr/pull/14118/

BGP Input/Output Queue Memory Optimizations

● BGP attempts to shove data in/out as fast as
possible

● Full BGP feeds or interfaces that flap were
causing millions of streams, Limit Incoming
data to 10k packets at a time

● Outgoing Packets could also grow unbounded
with any type of interface flapping going on

● connection->obuf_fifo for data output
○ Both Keepalive Pthread and Main Pthread generate

packets
● connection->ibuf_fifo for data input

○ I/O Pthread reads data for processing in the master
pthread

Keepalive
Pthread

I/O Pthread

Main
Pthread

BGP Packet I/O Queue Optimizations

● Simple!
○ For Input Stop reading packets after X packets in read_ibuf_work(), then go do other work
○ For Output Stop generating packets in bgp_generate_updgrp_packets when limit is hit and

go do other work

● https://github.com/FRRouting/frr/pull/12176 -> Input Queue
● https://github.com/FRRouting/frr/pull/12666 -> Output Queue

https://github.com/FRRouting/frr/pull/12176
https://github.com/FRRouting/frr/pull/12666

BGP I/O Packet Reduction Continued
janelle.pinkbelly.org# show bgp ipv4 uni summ
BGP router identifier 192.168.44.1, local AS number 64539 vrf-id 0
BGP table version 151714
RIB entries 286307, using 52 MiB of memory
Peers 4, using 2896 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
100.99.229.142 4 65011 4 2783 0 0 0 00:00:19 2 151714 N/A
192.168.119.205 4 23952 4 2690 0 0 55 00:00:19 3 151714 N/A
194.147.139.1 4 207465 5492 4 0 179927 0 00:00:19 151733 0 Martins feed
2a07:e480:2::2 4 207465 5708 5 0 314272 0 00:00:19 0 0 Martins feed

Total number of neighbors 4

janelle.pinkbelly.org# show bgp ipv4 uni summ
BGP router identifier 192.168.44.1, local AS number 64539 vrf-id 0
BGP table version 479851
RIB entries 892018, using 82 MiB of memory
Peers 4, using 80 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
100.99.229.142 4 65011 5 25560 479851 0 0 00:01:14 2 479850 N/A
192.168.119.205 4 23952 5 25478 479851 0 0 00:01:15 3 479850 N/A
194.147.139.1 4 207465 51076 5 479851 10000 0 00:01:14 480418 0 Martins feed
2a07:e480:2::2 4 207465 51116 6 479851 10000 0 00:01:14 0 0 Martins feed

`struct bgp_path_info_extra` breakup

bgp_dest bgp_path_info

Prefix Peer

bgp_path_info

bgp_path_info

bgp_path_info_extra

bgp_path_info_extra

bgp_path_info_extra

● `struct bgp_path_info` contains v4
basic path data

● `struct bgp_path_info_extra` is for
other afi/safi’s that BGP can talk

○ IPv6
○ EVPN
○ Flowspec
○ Labeled-Unicast

● It’s a dumping ground for new NLRI
data

● Everyone Pays for v4 data now
● A bgp_path_info will only ever

describe one type of bgp route.

`struct bgp_path_info_extra`

● Break up different AFI/SAFI combinations
into sub data and only allocate those
pointers when needed.

● Add some pointers and extra memory
allocation but savings is significant when
not using those AFI/SAFI’s

● 432 bytes for `struct bgp_path_info_extra`
prior to this change

● 176 bytes for `struct bgp_path_info_extra`
after this change

● https://github.com/FRRouting/frr/pull/14099
● There are more opportunities for

optimization if needed

bgp_path_info_extra

bgp_path_info_extra_evpnbgp_path_info_extra_fs

bgp_path_info_extra_vrfleak

https://github.com/FRRouting/frr/pull/14099

Zapi Buffer and BGP Announcement cleanup

● Zebra currently reads all the data it can over ZAPI and stores the individual ZAPI
commands as streams.

● Processing this data is much more expensive than reading and storing in memory
● Full BGP feed dumping into zebra causes it to allocate huge amounts of memory
● This is exclusively a BGP/Zebra Communication issue in FRR

Memory statistics for zebra:
System allocator statistics:
 Total heap allocated: 241 MiB
 Holding block headers: 4100 KiB
 Used small blocks: 0 bytes
 Used ordinary blocks: 107 MiB
 Free small blocks: 57 KiB
 Free ordinary blocks: 134 MiB
 Ordinary blocks: 96552
 Small blocks: 618
 Holding blocks: 1
(see system documentation for 'mallinfo' for meaning)
--- qmem libfrr ---
Stream : 44 variable 3432352 15042 161243800
Stream FIFO : 45 72 3240 48 3456

ZAPI Buffer and BGP Announcement Cleanup Current

While Incoming Data:
Grab packet
Stuff in Stream
Lock Mutex
Place in zserv->ibuf_fifo
Unlock Mutex

Signal Main Pthread to wake up

Zserv Pthread/Client Main Pthread

Foreach zserv:
Lock Mutex
Grab 1000 streams on
zserv->ibuf_fifo
Unlock Mutex

Foreach stream Grabbed:
Process each Stream

Zebra Fix

Look at count(zserv->ibuf_fifo)
to_process = 1000 -
count(zserv->ibuf_fifo)
While to_process || Incoming Data:

Grab packet
Stuff in Stream
Lock Mutex
Place in zserv->ibuf_fifo
Unlock Mutex
To_process -= 1

Signal Main Pthread to wake up

Zserv Pthread/Client Main Pthread

Foreach zserv:
Lock Mutex
Grab up to 1000 streams on
zserv->ibuf_fifo
Unlock Mutex

Foreach stream Grabbed:
Process each Stream

Zapi Message Buffering (BGP/Zebra Memory Bloat)
Zclient_send_message

● Call buffer_write
● On BUFFER_PENDING

○ Schedule wakeup via
event_add_write

● On BUFFER_EMPTY
○ Data was sent

Buffer_write
● If WOULDBLOCK

○ Save data on buffer structure
○ Return BUFFER_PENDING

● Else Write data to zebra

Memory statistics for bgpd:
System allocator statistics:
 Total heap allocated: 1132 MiB
 Holding block headers: 35 MiB
 Used small blocks: 0 bytes
 Used ordinary blocks: 1128 MiB
 Free small blocks: 5008 bytes
 Free ordinary blocks: 3359 KiB
 Ordinary blocks: 31615
 Small blocks: 87
 Holding blocks: 9
(see system documentation for 'mallinfo' for meaning)
--- qmem libfrr ---
Type : Current# Size Total Max# MaxBytes
Buffer : 7 24 184 8 224
Buffer data : 1 variable 4120 20904 86124480

BGP Current Process For Route Installation

● Receives packet of data on bgp I/O pthread
○ Saved in a Fifo and Passed to BGP Master Pthread

● Master Pthread grabs stream data from Fifo, decodes the NLRI and prefix
data to created basic data structures and saves data in appropriate tables

● Schedules Bestpath Running for prefixes read in
● BestPath processing wakes up and processes each prefix
● Once BestPath is run the routes are immediately installed into zebra

BGP zebra Install event creation
● Create a new fifo via typesafe node in `struct bgp_dest` called zi(short for zebra_item)

○ Head should be off of the `struct bgp_master`->zebra_announce
○ Can this be shared with the pq? < I am not sure >

● Create a new function bgp_zebra_schedule_announce
○ Insert bgp_dest into bm->zebra_announce fifo, lock the bgp_dest, if not already on the queue

■ If withdrawal flag is set, unset it
○ Set a new flag on the node `BGP_NODE_SCHEDULED_FOR_INSTALLATION_ZEBRA`
○ Schedule an event to handle the installations/withdrawals if not already scheduled

■ Should be cognizant of zclient->zebra_buffer_write_ready in that don’t schedule if bgp is waiting for this callback
● Create a new function bgp_zebra_schedule_withdrawal

○ Insert bgp_dest into bm->zebra_announce fifo
○ Set a new flag on the node `BGP_NODE_SCHEDULED_FOR_WITHDRAWAL_ZEBRA`

■ If installation flag is set, unset it
○ Schedule an event to handle the installations/withdrawals if not already scheduled

■ Should be cognizant of zclient_zebra_buffer_write_ready in that don’t schedule if bgp is waiting for this callback
● Add a new function bgp_zebra_buffer_write_ready to zclient->zebra_buffer_write_ready

○ Calls bgp_zebra_handle_announcements
● Create a new function bgp_zebra_handle_announcements

○ Pulls bgp_dest’s off of the bm->zebra_announce fifo
○ Sends the appropriate announce/withdrawal to zebra
○ UNSET’s appropriate flags and unlocks the nodes
○ If BUFFER_PENDING is received, note we are waiting for zebra_buffer_write_ready callback and stops processing of new nodes at this point in time

else process another node, bgp_zebra_buffer_write_ready will be called when it’s time to proceed again
● On shutdown of bgp table, ensure that the node(s) are removed from the bm->zebra_announce FIFO, flags unset and

unlocked

FRR Infrastructure Changes Coming

● BGP Connection/Peer Breakup
● BGP Bestpath Reorganization
● Zebra Dataplane Reorganization

BGP Connection / Peer Breakup

● Peer structure per incoming and
outgoing connection at peer
startup

● BGP has a state machine that
dictates which connection wins

● Consolidate down to one peer
once winner is decided

● Throws away loser data structure
● Problem

○ CLI consolidation
○ Connection data consolidation
○ Peer_xfer_conn
○ peer_xfer_config
○ BUGS BUGS BUGS

Peer Peer

Incoming from
Peer

Outgoing to Peer

Solution for peer data structure

● Create a data structure for the connection
○ `struct connection`
○ FSM has to be transformed to connection oriented

■ Peer oriented to connection oriented
● Everything needs to be touched in BGP
● https://github.com/FRRouting/frr/pull/8790

○ Create `struct connection` and directly place in peer
○ Abstract alloc/free memory
○ Start passing connection around instead of peer

● https://github.com/FRRouting/frr/pull/14379
○ Continued finding of connection data move over
○ Abstract FSM to use connection
○ Convert Events for bgp_io.c bgp_packet.c and bgp_fsm.c to

use a connection
● What’s Left?

○ Removal of peer_xfer_conn and peer_xfer_config functions
after decision is made on which connection to keep

Peer

Connection

Connection

Incoming from
Peer

Outgoing to Peer

https://github.com/FRRouting/frr/pull/8790
https://github.com/FRRouting/frr/pull/14379

BGP Bestpath Reorganization

janelle.pinkbelly.org# show bgp ipv4 uni 40.30.10.0
BGP routing table entry for 40.16.0.0/12, version 1376540
Paths: (3 available, best #2, table default)
 Advertised to non peer-group peers:
 100.99.229.142 192.168.119.205
 23952 5 6 7 8 9 10 111 12
 192.168.119.205 from 192.168.119.205 (27.0.0.16)
 Origin IGP, metric 0, valid, external, rpki validation-state: not found
 Last update: Sun Oct 29 08:17:07 2023
 207465 6939 32787 4249, (aggregated by 4249 40.15.254.160)
 194.147.139.1 from 194.147.139.1 (194.147.139.1)
 Origin IGP, valid, external, atomic-aggregate, otc 6939, best (AS Path), rpki validation-state: not found
 Last update: Sat Oct 28 16:13:55 2023
 207465 6939 32787 4249, (aggregated by 4249 40.15.254.160)
 194.147.139.2 (inaccessible, import-check enabled) from 2a07:e480:2::2 (194.147.139.2)
 Origin IGP, invalid, external, atomic-aggregate, otc 6939, rpki validation-state: not found
 Community: 55:66
 Last update: Sat Oct 28 16:15:31 2023

BGP Bestpath Ordering

● Current Algorithm:
○ Receive new path information, push in new `struct bgp_path_info` to front of bgp_dest->info

pointer, schedule best path selection via bgp_process()
○ BestPath calculation:(See bgp_best_selection() and bgp_path_info_cmp())

■ Set best = NULL
■ Foreach `struct bgp_path_info`:

● Run bgp_path_info_cmp() If current is better path then best
○ Best = current

■ If Multipath is enabled
● Foreach `struct bgp_path_info`:

○ If best == current continue;
○ Run bgp_path_info_cmp() if current can be used in mpath

■ Save mpath data pointers for current

Changes to Best Path

● New Algorithm:
○ Receive new path information, store new `struct bgp_path_info` to front of bgp_dest->info

pointer. Set UNSORTED flag to the new path info
○ Bestpath Calculation

■ While UNSORTED options
● Grab first UNSORTED flag set equal to unsorted, pull off list

■ Find First `struct bgp_path_info` without UNSORTED flag set current equal to it
■ Foreach `struct bgp_path_info` starting at current:

● Run bgp_path_info_cmp(unsorted, current)
● If current is better

○ Current = current->next and continue
● If unsorted is better

○ Place unsorted before current in list, store mpath info for this comparison

Changes to Best Path Continued

● For Mpath comparison:
○ Walk sorted list of best paths, stopping when mpath is no longer possible with comparisons,

since the bestpath ordering reasons have been kept

● Discussion/Problems
○ Sorted Ordering Only really matters for any type of scaled peering

■ I’m looking at you Data Centers
○ Break up into series of 2 commits, Get bestpath sorted order right first, then come back

through and get Multipath Working
○ Easy to prove correctness
○ Very hard to fix all the tests

Zebra DataPlane Cleanups

● Goal of adding the Dataplane api to zebra itself
○ FRR can talk to a variety of underlying data planes

■ Each can have their own requirements, should be able to pick up and place down a new
one

■ Dataplanes can have different functionality, should be able to abstract to a generic way
of talking about that functionality

○ FRR should have a pthread that is in charge of talking to the dataplane
■ Use the concept of a data plane context to allow for data communication such that

memory locking is not necessary
○ FRR should be able to receive Asynchronous Data Plane updates about anything and process

it accordingly

What zebra ended up with

● Dplane works with `struct dplane_contexts` that allow asynchronous discussion between the
dataplane and Zebra

● 4 netlink sockets in zebra (see kernel_init())
○ Netlink -> Receives netlink notifications from the kernel based upon `groups`
○ Netlink_cmd -> Sends netlink commands as non batched data
○ Netlink_dplane_out -> Sends batching data to the kernel
○ Netlink_dplane_in -> Receives information based upon `dplane_groups`

 groups = RTMGRP_IPV4_ROUTE | RTMGRP_IPV6_ROUTE | RTMGRP_IPV4_MROUTE |
 RTMGRP_NEIGH | ((uint32_t)1 << (RTNLGRP_IPV4_RULE - 1)) |
 ((uint32_t)1 << (RTNLGRP_IPV6_RULE - 1)) |
 ((uint32_t)1 << (RTNLGRP_NEXTHOP - 1)) |
 ((uint32_t)1 << (RTNLGRP_TC - 1));

 dplane_groups = (RTMGRP_LINK |
 RTMGRP_IPV4_IFADDR |
 RTMGRP_IPV6_IFADDR |
 ((uint32_t) 1 << (RTNLGRP_IPV4_NETCONF - 1)) |
 ((uint32_t) 1 << (RTNLGRP_IPV6_NETCONF - 1)) |
 ((uint32_t) 1 << (RTNLGRP_MPLS_NETCONF - 1)));

What is needed to be done

● The Problem
○ Under heavy load event processing would handle context data from the dplane sockets before

the reading of data of the master pthread sockets
■ https://github.com/FRRouting/frr/issues/13288 Is a great Example

● The Solution
○ Move all groups received via the Zebra Master Pthread to parsed into a context and passed

up through the data plane
■ https://github.com/FRRouting/frr/pull/13396 Is the fix for #13288

https://github.com/FRRouting/frr/issues/13288
https://github.com/FRRouting/frr/pull/13396

FRR Releases
Since Last Workshop

FRR 8.4

● BGP SoO support
● BGP Prefix Origin Validation State Extended Community RFC 8097
● BGP Route Leak Prevention w/ Roles RFC 9234
● BGP BMP l3VPN support
● PIMv6 Support w/ MLD

https://frrouting.org/release/8.4/

https://frrouting.org/release/8.4.1/

https://frrouting.org/release/8.4.2/

https://frrouting.org/release/8.4/
https://frrouting.org/release/8.4.1/

FRR 8.5

● PIMv6 BSM support
● Deprecation of shell commands
● BFD integration with static routes
● TC Zapi implementation
● BGP Graceful shutdown per neighbor
● BGP Accumulated IGP Metric RFC 7311
● BGP Accept Own community Attr RFC 7611
● BGP SNMP BGP4v2-MIB support

https://frrouting.org/release/8.5/

https://frrouting.org/release/8.5.1/

https://frrouting.org/release/8.5.2/

https://frrouting.org/release/8.5.3/

https://frrouting.org/release/8.5/
https://frrouting.org/release/8.5.1/
https://frrouting.org/release/8.5.2/

FRR 9.0

● Mgmtd
● BGP ASN dot notation RFC

5396
● BGP Software Version
● BGP Peering over 127.0.0.0/8
● `match source-protocol` for

BGP Routemaps
● Flex-Algorithm for SR-MPLS

RFC 9350
● BFD Support for RIP

● Upgrade to libyang2.1.80
● BGP Memory Reduction

https://frrouting.org/release/9.0/

https://frrouting.org/release/9.0.1/

https://frrouting.org/release/9.0/

MGMTd Overview

● Consolidation and management of all Management data by a Single Entity
○ Can interface with CLI, Netconf, Restconf, Grpc etc.

● Better control over configuration validation, commit and rollback
● Faster Collection of configuration data
● Offload computation burden of YANG data parsing and validations of new

configuration data away from individual daemons
● Improve performance of individual component daemons while loading large

configurations or retrieving operational dataset

● For 9.0 release staticd is the converted daemon

Mgmtd Example

eva# conf t file-lock
eva(config)# ip route 1.2.3.4/32 192.168.119.1
eva(config)# do show ip route static
eva(config)# do show mgmt datastore-contents candidate
json
{
 "frr-routing:routing": {
 "control-plane-protocols": {
 "control-plane-protocol": [
 {
 "type": "frr-staticd:staticd",
 "name": "staticd",
 "vrf": "default",
 "frr-staticd:staticd": {
 "route-list": [
 {
 "prefix": "1.2.3.4/32",
 "afi-safi": "frr-routing:ipv4-unicast",
 "path-list": [
 {
 "table-id": 0,
 "distance": 1,
 "frr-nexthops": {
 "nexthop": [
 {
 "nh-type": "ip4",
 "vrf": "default",
 "gateway": "192.168.119.1",
 "interface": "(null)"
 }]}}]}]}}]}}}

eva(config)# mgmt commit apply
eva(config)# do show ip route static
Codes: K - kernel route, C - connected, S - static, R - RIP,
 O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
 T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
 F - PBR, f - OpenFabric,
 > - selected route, * - FIB route, q - queued, r - rejected, b - backup
 t - trapped, o - offload failure

S>* 1.2.3.4/32 [1/0] via 192.168.119.1, enp13s0, weight 1, 00:00:03

BGP Software Version Capability
router bgp 64539
 neighbor 192.168.119.205 remote-as external
 neighbor 192.168.119.205 capability software-version
 ...

janelle.pinkbelly.org# show bgp ipv4 uni summ
BGP router identifier 192.168.44.1, local AS number 64539 vrf-id 0
BGP table version 1787622
RIB entries 1724972, using 158 MiB of memory
Peers 4, using 80 KiB of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
100.99.229.142 4 65011 46 150874 1787622 0 0 00:42:35 2 943657 N/A
192.168.119.205 4 23952 17 282465 1787622 0 0 00:00:14 0 0 FRRouting/9.2-dev
194.147.139.1 4 207465 219986 46 1787622 153 0 00:42:35 943655 0 Martins feed
2a07:e480:2::2 4 207465 353506 47 1787622 154 0 00:42:35 943655 0 Martins feed

Total number of neighbors 4
janelle.pinkbelly.org#

FRR 9.1 Upcoming

● BGP MAC-Vrf SoO support
● BGP `neighbor

addpath-tx-best-selected X`
● BGP MPLS vpn LSR

Redistribution
● PBR - pcp/vlan-id/vlan-tags

filters

● ISIS - redistribute table
● ISIS - SRv6 Support
● OSPF prefix-suppression

How to Communicate with FRR Developers

● Frrouting.slack.com
○ Most developers are on slack and willing to talk

● dev@lists.frrouting.org
○ Email alias where development questions can be asked

● frog@lists.frrouting.org
○ Email alias to discuss operational concerns

● security@lists.frrouting.org
○ Email alias for discussion of security concerns

mailto:dev@lists.frrouting.org
mailto:frog@lists.frrouting.org
mailto:security@lists.frrouting.org

Open Microphone
Questions?

Thanks!

