FRR Workshop
Oct 30

Donald Sharp
Dr Helen Chen
Dr Feng Xie

?

Agenda

OSPFv3 over IPv4

BGP Memory Optimizations
FRR Infrastracture Changes
FRR Releases

OSPFv3 over IPV4

I. Chen, F. Xie, and S. Abdallah

October 30, 2023

MITRE | sssmenss

Evolution of OSPFv3

= OSPFv3 originally only supported |IPv6 address family.

= OSPFv3 standards enhanced OSPFv3 to carry both IPv4 and IPv6 address
families over IPv6 transport.

= RFC7949 allows OSPFv3 to become the routing protocol of choice over both
IPv4 and IPv6 transports.

- RFC7949 - OSPFv3 over IPv4 for IPv6 Transition
— An |IP router can use OSPFv3 to replace OSPFv2 both in IPv4-only deployments and in
mixed IPv4-IPv6 deployments

MITRE £ 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. PUBLIC RELEASE CASE NUMBER 21-2244

Motivations

* Many existing networks
— Have an existing IPv4 core
— Difficult to migrate to IPv6 due to the sizable task of renumbering
— Rely upon relatively low-speed radio links

= Replacing OSPFv2 with OSPFv3 over IPv4 transport
- Is an intermediate step for eventual migration to IPv6
— Allows the use of new features standardized in OSPFv3

— Enables reduction in overhead bandwidth when compared to OSPFv3 over
IPv6 transport

MITRE £ 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. PUBLIC RELEASE CASE NUMBER 21-2244

Implementation

» Built a prototype implementation of RFC7949, based on FRR Release 7.3

* FRR provides an IETF standards-compliant implementation of OSPFv2/v3 with deployment
experience both in commercial and tactical environments

* The modular design of OSPFv3 in FRR Release 7.3 makes the implementation of RFC7949
relatively straight forward.

= An indicator for the underlying IPv4 transport address was added to both the OSPFv3 interface
and to the OSPFv3 neighbor structure.

= An AF_INET socket is added to handle OSPFv3 packets encapsulated in an IPv4 packet.

* When IPv4 is used as the transport mechanism, a different pseudo-header is used to calculate
the OSPFv3 checksum and the corresponding AF_INET socket is used for transmitting and
receiving OSPFv3 packets.

* The implementation improved FRR's sending of OSPFv3 packets by replacing the IPv6 link local
address with an interface identifier. Replacing the address with the interface identifier increases
modularity and reduces the potential for operational issues should an interface address change
for any reason

MITRE £ 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. PUBLIC RELEASE CASE NUMBER 21-2244

Operational Considerations

= |f the transport control is explicitly configured, either at the protocol/instance level or at the OSPFv3 interface level,
the specified transport mechanism MUST be used.

» If an interface is not assigned an IP address required for the transport control configuration (except for
unnumbered IPv4 interfaces), then the OSPFv3 interface becomes inactive.

* Removal of an IP address may result in de-activation of the corresponding OSPFv3 interface if the required
transport configuration cannot be satisfied .

» Addition of an IPv4/IPv6 address may result in re-activation of the corresponding OSPFv3 interface if the required
transport configuration can be satisfied.

*» Changing the OSPFv3 transport at the process/instance level may result in activation/de-activation of the
associated OSPFv3 interfaces depending on whether the new transport requirement on each interface can be
satisfied.

* Changing the OSPFv3 transport at the OSPFv3 interface level may result in activation/de-activation of the
OSPFv3 interface depending on whether the new transport requirement on the interface can be satisfied.

MITRE © 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED, PUBLIC RELEASE CASE NUMBER 21-2244

Conclusions

= Use IPv4 as the transport for OSPFv3

= Facilitates the eventual migration

= Enables reduction in overhead bandwidth when compared to
OSPFv3 over IPv6 transport

» Extremely important for many mission-critical tactical deployments

MITRE £ 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. PUBLIC RELEASE CASE NUMBER 21-2244

Packet Analysis — PDU Byte Count Comparison

Type OSPFV2/1Pv4 OSPFV3/IPv6 OSPFV3/TPv4
IP Heade 20 40 20
A OSPF Packet Header (OPH) 24 16 16
n, is the number of LSAs Authentication Included in OPH 24 24
n, is the number of LSAs OSPF Hello Packet (OHP) 20 20 20
requested LSA Header (LH) 20 20 20
n; is the number of LSAs Database Description Packet (DBP) OPH+8+n;*LH = OPH+12+n;*LH OPH+12+n;*LH
Link State Request Packet (LSRP) OPH+ n*12 OPH+n;*12 OPH+n,*12
aChIOWIedged Link State acknowledgement Packet (LSAP) OPH4ns*LH OPH+ns*LH OPH+ns*LH
n, is the number of LSAs updated pink state Update Packet (LSUP) OPH+n#LSA OPH+ns#*LSA OPH+ns*LSA
n; is the number of OSPF Type-5 External LSAs 16 48 36
. Type-4 Summary LSAs 8 12 12
interfaces Type-3 Summary LSAs 8 24 12
Type-2 Network LSAs 4 Bl 4
Type-1 Router LSAs 44 ns*8 4+ns*16 4+ns*16
OSPFv3 Link LSA Not applicable 44 20
OSPFv3 Intra-Area-Prefix LSA In Router LSA 52 12+8

M'TRE © 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. PUBLIC RELEASE CASE NUMBER 21-2244

Single area — No
summary LSAs

Packet capture from
an OSPFv2 router of
a network of six
OSPFv2 routers

Assumed the same
sequence of events
in both OSPFv2 and
OSPFv3 over IPv4.

Expect a 2%
increase in protocol
PDU total bytes for
the duration of the
run

Six Node Topology Comparison

OSPFv2/1Pv4
Hello Packet (count)
Hello Packet (byte) 30634
Database Description Packet (count) 11
Database Description Packet (byte) 1170
Link State Request Packet (count) 3
Link State Request Packet (byte) 246
Link State Acknowledgement Packet (count) 8
Link State Acknowledgement Packet (bvte) 716
Link State Update (count) 39
Link State Update (byte) 7086
Total (byte) 39852

OSPFv3/IPv4

36218
11
1390

294

39

9258
48004

© 2021 THE MITRE CORPORATION. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. PUBLIC RELEASE CASE NUMBER 21-2244

Change over
OSPFv2
Not applicable
+2%

Not applicable
+2%

Not applicable
+2%

Not applicable
+2%

Not applicable
+3%
+2%

OSPFv3 over IPV4
for IPv6 Transition

draft-chen-ospf-transition-to-ospfv3-00
l. Chen and A. Lindem

Applicability

* Existing approach
— Carry IPv4 routes via OSPFv2
— Carry IPv6 routes via OSPFv3
— This increases operational complexity & cost because need
to manage 2 IGPs at the same time for the same site
* OSPFv3 over IPv4 is an alternative for some

— Use existing Address Family extension to carry both |Pv4 &
IPv6 prefixes in OSPFv3 at the same time

— Start with OSPFv3/IPv4, later add IPv6 routes, and
eventually transition to OSPFv3/IPV6

— Lower operational complexity & cost for some sites
* This helps some sites with IPv6 transition

Transition to OSPFv3

Establish full adjacency

R1:0SPFv3 R2: OSPFv3

20.1.1.1/24 / 20.1.1.2/24
2001:1::1/64 & 2001:1::2/64

Retain original OSPFv3 domain/topology

OSPFv3 Packet in IPV4

0 1 2 3
0123456 T7T8901234567T8901234567890.1

B e e e e e e e e e e e I R e e e el S e Sl ol S
| 4 | IHL |Type of Service| Total Length |
e el e Tl el el e Tl Sl el e e Sl el e S Sl el e el Sl el et el Sl e el el St et e el
| Identification |Flags | Fragment Offset |
B e e e e e e S e e e e e e e e S S
| Time to Live | Protocol 89 | Header Checksum | IPv4

B e e e B e S e e e e T e e S S et e T S

| Source Address | Header
R e e e e B e e e e e e e e e el Al S S e e e
| Destination Address |
B T e e e e e e e S
| Options | Padding |
B e e e e e e e e e R e e R e e e el S e e e o
| 3 | Type | Packet length |
e e e e B e e e e e e S el Sl S S e e e
| Router ID | OSPFv3
B e e e T Sl T S

| RO, | Header
B e e S e e e e e e e e e S e et e

| Checksum | Instance ID | 0 |
e e e S e e e B e e e e e e e e e e
| OSPFv3 Body ... |

R el S el T S e el e el S et el el Sl et e el S e el el S el el el e e S el T e S

Source Address

0 1 2 3
012345678901 234567890123454678901
+—t—F—t+—F—F—+—F—F—tF—+—F+—-+—+
| 4 | IHL |Type of Service| Total Length |
e e e s e e A S e
| Identification |Flags| Fragment Offset |
+—t—F—t+—F—F—+—F—F—tF—F—F—F—F—F+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F+—-+—+
| Time to Live | Protocol 89 | Header Checksum |
e o s et e e A e A s o
| Source Address |
+—t—F—t+—F—F—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—tF—F—F—F—F—F—+—F+—+—+
| Destination Address |
et e s At S O
| Options | Padding |
+—t—F—t+—F—F—F+—F—F—tF—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F—F—F—F—F—+—F+—+—+

R1 sends OSPFv3 packets using source address 20.1.1.1 ..., (o] ez oera)

R2 sends OSPFv3 packets using source address 20.1.1.2 . I

Destination Address

0 1 2 3
01234567890123456789012345678901
=ttt —t—F+—+
| 4 | IHL |Type of Service| Total Length |
t—t—t—t—t—t—t—t—t—t—t—t—F—t—t—t—F—t—t—t—F—t—t—F—F—t—t—F—F—F—t—F+—+
| Identification |Flags| Fragment Offset |
=t =ttt —F—+—+
| Time to Live | Protocol 89 | Header Checksum |
t—t—t—t—t—t—t—t—t—t—t—t—F—t—t—t—F—t—t—t—F—t—t—F—F—t—t—F—F—t—t—F+—+
I Source Address |
=t =ttt —F+—+
| Destination Address |
t—t—t—t—t—t—t—t—t—t—t—t—F—t—t—t—F—t—t—t—F—t—t—F—F—t—t—F—F—F—t—F+—+
| Options | Padding |
=ttt —t—F+—+

Multicast packets =) (Fzowra)
+ ALLSPFRouters (224.0.0.5) and ALLDRouters (224.0.0.6) e | e

Unicast packets
* IPv4 address assigned to the receiving interface.
* R1sends to destination address 20.1.1.2.

Deployment

* Normally, IPv4 and IPv6 network topologies will
be identical in an OSPF deployment

a. OSPFv2 on IPv4 and OSPFv3 on IPv6

b. OSPFv3 using single IP version for transport
* During transition

— If IPv4 network is larger, then OSPFv3 on IPv4

— If IPv6 network is larger, then OSPFv3 on IPv6
e QOut of Scope

— IPv4/0OSPFv2 and IPv6/OSPFv3 islands

— Other misconfigurations

BGP Memory Optimizations

Why do we Care?

BGP Peering Data Structure Reduction

BGP Node -> dest breakup

Input Queue/Output Queue for Peering
bgp_path_info_extra cleanup

ZAPI Buffer and BGP Announcement Cleanup

Why do we care?

e FRR runs on embedded systems
o Limited memory in a bunch of cases

e No good way to give memory back
o malloc_trim() has no good way to not block the entire program

e (Good Progamatic hygiene

BGP Peering Data Structure Reduction

e peer->ibuf scratch
o Allocating 65535 * 10 for scratch space on a peer, can be bgp_read() private static data

e struct bgp synchronize'->withdraw_low just never used
e peer->sync[AFI_MAX][SAFI_MAX]
o Never Used, 48 bytes * 4 * 8 per peer (1536 bytes)

e peer->obuf work

o Never Used, 66559 bytes
e peer->scratch

o Never Used, 65535 bytes
e peer->last reset cause

o Used but never approaches the 65535 allocated, allocate a stream structure when peer goes
down instead just copy the stream data and use that.

BGP Peering Data Size Reduction

e 8.5 -> sizeof(struct peer) = 741976 bytes(!!!)
e 9.0 -> sizeof(struct peer) = 20600 bytes

e Lesson Learned
o Frequent review of what is used or not in our code base

e https://github.com/FRRouting/frr/pull/14075

struct bgp dest breakup

Struct bgp_dest
1.1.1.0/31

/\

Struct bgp_dest Struct bgp_dest
1.1.1.0/32 1.1.1.1/32

Table data structure in FRR is a
specialized binary tree that allows
for handling route prefixes

Parent node is always a shorter
prefix that contains all the child
nodes

Top of the tree is always 0.0.0.0/0
or the v6 equivalent

200 bytes for each node in BGP
Full BGP Feed has 1.4 million
nodes, of which 900k are actual
routes

struct bgp dest breakup

struct
route_node
1.1.1.0/31

struct struct
route_node | struct bgp_dest route_node]

—t struct bgp dest
1.1.1.0/32 1.1.1.1/32 struct bgp_des

Each route_node info pointer points at the “struct bgp dest” which contains the bgp specific data
Place Holder Nodes now just use a "struct route _node’

“struct route_node’ is 120 bytes

“struct bgp_dest’ is 96 bytes

Saves about 30mb per full BGP feed

https://github.com/FRRouting/frr/pull/14118/

BGP Input/Output Queue Memory Optimizations

Keepalive
Pthread

T

Main
Pthread

I/O Pthread

BGP attempts to shove data in/out as fast as
possible

Full BGP feeds or interfaces that flap were
causing millions of streams, Limit Incoming
data to 10k packets at a time

Outgoing Packets could also grow unbounded
with any type of interface flapping going on

connection->obuf _fifo for data output
o Both Keepalive Pthread and Main Pthread generate
packets
connection->ibuf_fifo for data input
o /O Pthread reads data for processing in the master
pthread

BGP Packet I/0O Queue Optimizations

e Simple!
o For Input Stop reading packets after X packets in read_ibuf work(), then go do other work
o For Output Stop generating packets in bgp _generate _updgrp_packets when limit is hit and
go do other work

e https://qithub.com/FRRouting/frr/pull/12176 -> Input Queue
e hitps://github.com/FRRouting/frr/pull/12666 -> Output Queue

https://github.com/FRRouting/frr/pull/12176
https://github.com/FRRouting/frr/pull/12666

BGP 1/0O Packet Reduction Continued

janelle.pinkbelly.org# show bgp ipv4 uni summ
BGP router identifier 192.168.44.1,
BGP table version 151714

RIB entries 286307, using 52 MiB of memory
Peers 4, using 2896 KiB of memory

Neighbor v AS MsgRcvd MsgSent
100.99.229.142 4 65011 4 2783
192.168.119.205 4 23952 4 2690
194.147.139.1 4 207465 5492 4
2a07:e480:2::2 4 207465 5768 5

Total number of neighbors 4

janelle.pinkbelly.org# show bgp ipv4 uni summ
BGP router identifier 192.168.44.1,
BGP table version 479851
RIB entries 892018, using 82 MiB of memory
Peers 4, using 80 KiB of memory

Neighbor v AS MsgRcvd MsgSent
100.99.229.142 4 65011 5 25560
192.168.119.205 4 23952 5 25478
194.147.139.1 4 207465 51076 5
2a07:e480:2::2 4 207465 51116 6

local AS number 64539

TblVer
0

(%
(%
(%

local AS number 64539

ThlVer
479851
479851
479851
479851

vrf-id @
InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
0 0 00:00:19 2 151714 N/A
© 55 00:00:19 3 151714 N/A
179927 0 00:00:19 151733 0@ Martins feed
314272 0 00:00:19 0 0@ Martins feed
vrf-id @

InQ OutQ Up/Down State/PfxRcd PfxSnt Desc

9 0 00:01:14 2 479850 N/A

9 0 00:01:15 3 479850 N/A
10000 0 00:01:14 480418 0 Martins feed
10000 0 00:01:14 0 0 Martins feed

“struct bgp_path_info_extra’ breakup

“struct bgp_path_info’ contains v4
basic path data

Prefix Peer e ‘struct bgp_path_info_extra’ is for
other afi/safi’s that BGP can talk
_ o IPv6
bgp_dest | —— bgp_path_info [~ hgp path_info_extra o EVPN
l o Flowspec
o Labeled-Unicast
_ e |t's a dumping ground for new NLRI
bgp_path_info | bgp path_info_extra data
e Everyone Pays for v4 data now
l e Abgp path_info will only ever

describe one type of bgp route.
bgp_path_info | bgp_path_info_extra P P

“struct bgp_path_info_extra’

bgp_path_info_extra_fs bgp_path_info_extra_evpn

~ 7

| bgp_path_info_extra o

| :

bgp_path_info_extra_vrfleak)

Break up different AFI/SAFI combinations
into sub data and only allocate those
pointers when needed.

Add some pointers and extra memory
allocation but savings is significant when
not using those AFI/SAFI’'s

432 bytes for “struct bgp _path_info_extra’
prior to this change

176 bytes for “struct bgp _path_info_extra’
after this change
https://github.com/FRRouting/frr/pull/14099
There are more opportunities for
optimization if needed

https://github.com/FRRouting/frr/pull/14099

Zapi Buffer and BGP Announcement cleanup

Zebra currently reads all the data it can over ZAPI and stores the individual ZAPI
commands as streams.

Processing this data is much more expensive than reading and storing in memory
Full BGP feed dumping into zebra causes it to allocate huge amounts of memory
This is exclusively a BGP/Zebra Communication issue in FRR

Memory statistics for zebra:

System allocator statistics:
Total heap allocated: 241 MiB
Holding block headers: 4100 KiB

Used small blocks: 0 bytes
Used ordinary blocks: 107 MiB
Free small blocks: 57 KiB
Free ordinary blocks: 134 MiB
Ordinary blocks: 96552
Small blocks: 618
Holding blocks: 1

(see system documentation for 'mallinfo' for meaning)

--- gmem libfrr ---

Stream : 44 variable 3432352 15042 161243800
Stream FIFO : 45 72 3240 48 3456

ZAP| Buffer and BGP Announcement Cleanup Current

Zserv Pthread/Client Main Pthread

While Incoming Data:

Grab packet Foreach zserv:
i Lock Mutex
f(t)ljcfli Il\r;lligiam Grab 1000 streams on

zserv->ibuf_fifo

Place in zserv->ibuf_fifo Unlock Mutex

Unlock Mutex

Signal Main Pthread to wake up Foreach stream Grabbed:

Process each Stream

Zebra Fix

Zserv Pthread/Client

Main Pthread

Look at count(zserv->ibuf_fifo)
to_process = 1000 -
count(zserv->ibuf_fifo)

Grab packet
Stuff in Stream
Lock Mutex
Place in zserv->ibuf_fifo
Unlock Mutex
To_process -= 1

Signal Main Pthread to wake up

While to_process || Incoming Data:

Foreach zserv:
Lock Mutex
Grab up to 1000 streams on
zserv->ibuf_fifo
Unlock Mutex

Foreach stream Grabbed:
Process each Stream

Zapi Message Buffering (BGP/Zebra Memory Bloat)

Zclient_send_message Buffer_write
e Call buffer_write e [fWOULDBLOCK
e OnBUFFER _PENDING o Save data on buffer structure
o Schedule wakeup via o Return BUFFER_PENDING
event_add_write e FElse Write data to zebra

e OnBUFFER_EMPTY
o Data was sent

Memory statistics for bgpd:

System allocator statistics:
Total heap allocated: 1132 MiB
Holding block headers: 35 MiB

Used small blocks: 0 bytes
Used ordinary blocks: 1128 MiB
Free small blocks: 5008 bytes
Free ordinary blocks: 3359 KiB
Ordinary blocks: 31615
Small blocks: 87

Holding blocks: 9

(see system documentation for 'mallinfo' for meaning)
--- gmem libfrr ---

Type : Current# Size Total
Buffer : 7 24 184
Buffer data : 1 variable 4120

Max# MaxBytes
8 224
20904 86124480

BGP Current Process For Route Installation

e Receives packet of data on bgp I/O pthread
o Saved in a Fifo and Passed to BGP Master Pthread

e Master Pthread grabs stream data from Fifo, decodes the NLRI and prefix
data to created basic data structures and saves data in appropriate tables

e Schedules Bestpath Running for prefixes read in

e BestPath processing wakes up and processes each prefix

e Once BestPath is run the routes are immediately installed into zebra

BGP zebra Install event creation

e Create a new fifo via typesafe node in “struct bgp_dest’ called zi(short for zebra_item)
o Head should be off of the “struct bgp_master'->zebra_announce
o Can this be shared with the pq? < | am not sure >
e Create a new function bgp_zebra_schedule_announce
o Insert bgp_dest into bm->zebra_announce fifo, lock the bgp_dest, if not already on the queue
= If withdrawal flag is set, unset it
) Set a new flag on the node ‘BGP_NODE_SCHEDULED_FOR_INSTALLATION_ZEBRA®
o Schedule an event to handle the installations/withdrawals if not already scheduled
u Should be cognizant of zclient->zebra_buffer_write_ready in that don’t schedule if bgp is waiting for this callback

e Create a new function bgp_zebra_schedule_withdrawal

o Insert bgp_dest into bm->zebra_announce fifo
o Set a new flag on the node 'BGP_NODE_SCHEDULED FOR_WITHDRAWAL_ZEBRA®
n If installation flag is set, unset it

o Schedule an event to handle the installations/withdrawals if not already scheduled
[Should be cognizant of zclient_zebra_buffer_write_ready in that don’t schedule if bgp is waiting for this callback
e Add a new function bgp_zebra_buffer_write_ready to zclient->zebra_buffer_write_ready
o Calls bgp_zebra_handle_announcements
e Create a new function bgp_zebra_handle_announcements
o Pulls bgp_dest’s off of the bm->zebra_announce fifo
o Sends the appropriate announce/withdrawal to zebra
o UNSET's appropriate flags and unlocks the nodes
o If BUFFER_PENDING is received, note we are waiting for zebra_buffer_write_ready callback and stops processing of new nodes at this point in time
else process another node, bgp_zebra_buffer_write_ready will be called when it’s time to proceed again
e On shutdown of bgp table, ensure that the node(s) are removed from the bm->zebra_announce FIFO, flags unset and

unlocked

FRR Infrastructure Changes Coming

e BGP Connection/Peer Breakup
e BGP Bestpath Reorganization
e Zebra Dataplane Reorganization

BGP Connection / Peer Breakup

'Fg':grming from Outgoing to Peer e Peer structure per incoming and
outgoing connection at peer
T startup
e BGP has a state machine that
Peer Peer dictates which connection wins

e Consolidate down to one peer
once winner is decided
e Throws away loser data structure

e Problem

o CLI consolidation
Connection data consolidation
Peer xfer_conn
peer_xfer_config
BUGS BUGS BUGS

@)
©)
@)
©)

Solution for peer data structure

Incoming from
Peer

Peer

Connection

Outgoing to Peer

T

Connection

Create a data structure for the connection
o ‘struct connection’
o FSM has to be transformed to connection oriented
m Peer oriented to connection oriented

Everything needs to be touched in BGP
https://qithub.com/FRRouting/frr/pull/8790

o Create ‘struct connection™ and directly place in peer
o Abstract alloc/free memory
o Start passing connection around instead of peer

https://qithub.com/FRRouting/frr/pull/14379

o Continued finding of connection data move over

o Abstract FSM to use connection

o Convert Events for bgp_io.c bgp_packet.c and bgp_fsm.c to
use a connection

What's Left?

o Removal of peer_xfer_conn and peer_xfer_config functions
after decision is made on which connection to keep

https://github.com/FRRouting/frr/pull/8790
https://github.com/FRRouting/frr/pull/14379

BGP Bestpath Reorganization

janelle.pinkbelly.org# show bgp ipv4 uni 40.30.10.0
BGP routing table entry for 40.16.0.0/12, version 1376540
Paths: (3 available, best #2, table default)
Advertised to non peer-group peers:
100.99.229.142 192.168.119.205
23952 56 789 10 111 12
192.168.119.205 from 192.168.119.205 (27.0.0.16)
Origin IGP, metric @, valid, external, rpki validation-state: not found
Last update: Sun Oct 29 ©8:17:07 2023
207465 6939 32787 4249, (aggregated by 4249 40.15.254.160)
194.147.139.1 from 194.147.139.1 (194.147.139.1)
Origin IGP, valid, external, atomic-aggregate, otc 6939, best (AS Path), rpki validation-state: not found
Last update: Sat Oct 28 16:13:55 2023
207465 6939 32787 4249, (aggregated by 4249 40.15.254.160)
194.147.139.2 (inaccessible, import-check enabled) from 2a07:e480:2::2 (194.147.139.2)
Origin IGP, invalid, external, atomic-aggregate, otc 6939, rpki validation-state: not found
Community: 55:66
Last update: Sat Oct 28 16:15:31 2023

BGP Bestpath Ordering

e Current Algorithm:

o Receive new path information, push in new “struct bgp_path_info" to front of bgp dest->info
pointer, schedule best path selection via bgp_process()
o BestPath calculation:(See bgp _best selection() and bgp_path_info_cmp())
m Setbest=NULL
m Foreach "struct bgp_path_info':
e Run bgp_path_info_cmp() If current is better path then best
o Best = current
m If Multipath is enabled
e Foreach 'struct bgp_path_info':
o If best == current continue;
o Run bgp_path_info_cmp() if current can be used in mpath
m Save mpath data pointers for current

Changes to Best Path

e New Algorithm:
o Receive new path information, store new “struct bgp_path_info" to front of bgp_dest->info
pointer. Set UNSORTED flag to the new path info
o Bestpath Calculation
m While UNSORTED options
e Grab first UNSORTED flag set equal to unsorted, pull off list
m Find First “struct bgp_path_info” without UNSORTED flag set current equal to it
m Foreach “struct bgp_path_info" starting at current:
e Run bgp_ path_info_cmp(unsorted, current)
e |If currentis better
o Current = current->next and continue
e If unsorted is better
o Place unsorted before current in list, store mpath info for this comparison

Changes to Best Path Continued

e For Mpath comparison:
o Walk sorted list of best paths, stopping when mpath is no longer possible with comparisons,

since the bestpath ordering reasons have been kept

e Discussion/Problems
o Sorted Ordering Only really matters for any type of scaled peering
m I'm looking at you Data Centers
o Break up into series of 2 commits, Get bestpath sorted order right first, then come back
through and get Multipath Working
o Easy to prove correctness
o Very hard to fix all the tests

Zebra DataPlane Cleanups

e (Goal of adding the Dataplane api to zebra itself
o FRR can talk to a variety of underlying data planes
m Each can have their own requirements, should be able to pick up and place down a new
one
m Dataplanes can have different functionality, should be able to abstract to a generic way
of talking about that functionality
o FRR should have a pthread that is in charge of talking to the dataplane
m Use the concept of a data plane context to allow for data communication such that
memory locking is not necessary
o FRR should be able to receive Asynchronous Data Plane updates about anything and process
it accordingly

What zebra ended up with

e Dplane works with “struct dplane_contexts™ that allow asynchronous discussion between the
dataplane and Zebra
e 4 netlink sockets in zebra (see kernel _init())
o Netlink -> Receives netlink notifications from the kernel based upon “groups’
Netlink_cmd -> Sends netlink commands as non batched data
Netlink_dplane_out -> Sends batching data to the kernel
Netlink_dplane_in -> Receives information based upon "dplane_groups’

O O O

groups = RTMGRP_IPV4_ROUTE | RTMGRP_IPV6_ROUTE | RTMGRP_IPV4_MROUTE |
RTMGRP_NEIGH | ((uint32_t)1 << (RTNLGRP_IPV4_RULE - 1)) |
((uint32_t)1 << (RTNLGRP_IPV6_RULE - 1)) |
((uint32_t)1 << (RTNLGRP_NEXTHOP - 1)) |
((uint32_t)1 << (RTNLGRP_TC - 1));

dplane_groups = (RTMGRP_LINK |
RTMGRP_IPV4_IFADDR |
RTMGRP_IPV6_IFADDR |
((uint32_t) 1 << (RTNLGRP_IPV4_NETCONF - 1)) |
((uint32_t) 1 << (RTNLGRP_IPV6_NETCONF - 1)) |
((uint32_t) 1 << (RTNLGRP_MPLS_NETCONF - 1)));

What is needed to be done

e T[he Problem

o Under heavy load event processing would handle context data from the dplane sockets before
the reading of data of the master pthread sockets
m https://github.com/FRRouting/frr/issues/13288 Is a great Example

e The Solution

o Move all groups received via the Zebra Master Pthread to parsed into a context and passed
up through the data plane
m https://github.com/FRRouting/frr/pull/13396 Is the fix for #13288

https://github.com/FRRouting/frr/issues/13288
https://github.com/FRRouting/frr/pull/13396

FRR Releases

Since Last Workshop /

.}

FRR 8.4

BGP So0 support

BGP Prefix Origin Validation State Extended Community RFC 8097
BGP Route Leak Prevention w/ Roles RFC 9234

BGP BMP I3VPN support

PIMv6 Support w/ MLD

https://frrouting.org/release/8.4/

https://frrouting.org/release/8.4.1/

https://frrouting.org/release/8.4.2/

https://frrouting.org/release/8.4/
https://frrouting.org/release/8.4.1/

FRR 8.5

PIMve BSM support

Deprecation of shell commands

BFD integration with static routes

TC Zapi implementation

BGP Graceful shutdown per neighbor

BGP Accumulated IGP Metric RFC 7311
BGP Accept Own community Attr RFC 7611
BGP SNMP BGP4v2-MIB support

https://frrouting.org/release/8.5/

https://frrouting.org/release/8.5.1/

https://frrouting.org/release/8.5.2/

https://frrouting.org/release/8.5.3/

https://frrouting.org/release/8.5/
https://frrouting.org/release/8.5.1/
https://frrouting.org/release/8.5.2/

FRR 9.0

e Mgmtd e Upgrade to libyang2.1.80
e BGP ASN dot notation RFC e BGP Memory Reduction
5396

e BGP Software Version
e BGP Peering over 127.0.0.0/8
e ‘match source-protocol” for
BGP Routemaps https://frrouting.org/release/9.0.1/
e Flex-Algorithm for SR-MPLS
RFC 9350
e BFD Support for RIP

https://frrouting.org/release/9.0/

https://frrouting.org/release/9.0/

MGMTd Overview

e Consolidation and management of all Management data by a Single Entity
o Can interface with CLI, Netconf, Restconf, Grpc etc.

Better control over configuration validation, commit and rollback

e Faster Collection of configuration data
Offload computation burden of YANG data parsing and validations of new
configuration data away from individual daemons

e Improve performance of individual component daemons while loading large
configurations or retrieving operational dataset

e For 9.0 release staticd is the converted daemon

Mgmtd Example

eva# conf t file-lock eva(config)# mgmt commit apply
eva(config)# ip route 1.2.3.4/32 192.168.119.1 eva(config)# do show ip route static
eva(config)# do show ip route static Codes: K - kernel route, C - connected, S - static, R - RIP,
eva(config)# do show mgmt datastore-contents candidate 0 - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
json T - Table, v - VNC, V - VNC-Direct, A - Babel, D - SHARP,
{ F - PBR, f - OpenFabric,
"frr-routing:routing": { > - selected route, * - FIB route, q - queued, r - rejected, b - backup
"control-plane-protocols": { t - trapped, o - offload failure

“control-plane-protocol”: [
{ S>* 1.2.3.4/32 [1/0] via 192.168.119.1, enp13s0, weight 1, 00:00:03

"type": "frr-staticd:staticd",

"name": "staticd",

"vrf": "default",

"frr-staticd:staticd": {

"route-list": [
{

"prefix": "1.2.3.4/32",
"afi-safi": "frr-routing:ipv4-unicast",
"path-list": [

"table-id": @,

"distance": 1,

"frr-nexthops": {

"nexthop": [
{

"nh-type": "ip4",
"vrf": "default",
"gateway": "192.168.119.1",
“interface": "(null)"

FIIMF)

BGP Software Version Capability

router bgp 64539

neighbor 192.168.119.205 remote-as external
neighbor 192.168.119.205 capability software-version

janelle.pinkbelly.org# show bgp ipv4 uni summ

BGP router identifier 192.168.44.1,

BGP table version 1787622

RIB entries 1724972, using 158 MiB of memory

Peers 4, using 80 KiB of memory

Neighbor v AS
100.99.229.142 4 65011
192.168.119.205 4 23952
194.147.139.1 4 207465
2a07:e480:2::2 4 207465

Total number of neighbors 4
janelle.pinkbelly.org#

MsgRcvd
46

17
219986
353506

MsgSent
150874
282465

46
47

ThlvVer
1787622
1787622
1787622
1787622

local AS number 64539 vrf-id ©

InQ OutQ Up/Down State/PfxRcd

0
0
153
154

0 00:42:35
0 00:00:14
0 00:42:35
0 00:42:35

2
0
943655
943655

PfxSnt Desc

943657 N/A
©® FRRouting/9.2-dev
0 Martins feed
0 Martins feed

FRR 9.1 Upcoming

e [SIS - redistribute table
ISIS - SRv6 Support
e OSPF prefix-suppression

e BGP MAC-Vrf SoO support

e BGP "neighbor
addpath-tx-best-selected X

e BGP MPLS vpn LSR
Redistribution

e PBR - pcp/vlan-id/vlan-tags
filters

How to Communicate with FRR Developers

e Frrouting.slack.com
o Most developers are on slack and willing to talk

e dev@lists.frrouting.org
o Email alias where development questions can be asked

e frog@lists.frrouting.org
o Email alias to discuss operational concerns

e security@lists.frrouting.org
o Email alias for discussion of security concerns

mailto:dev@lists.frrouting.org
mailto:frog@lists.frrouting.org
mailto:security@lists.frrouting.org

Open Microphone

Questions?

.}

